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Abstract

The natural convective flow and associated heat transfer in a fluid saturated porous medium have been investigated
using the generalised porous medium approach. Many new features have been predicted with the convective heat transfer
boundary condition. A detailed parametric study reveals that multicellular flow patterns appear at higher Darcy and
Rayleigh numbers and lower Biot numbers. Results are presented for a Darcy number range of 107'-1072 Rayleigh
number range of 10>-10° and aspect ratios from 1 to 10. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature

A aspect ratio (H/L)
Bi Biot number
¢, specific heat

Da Darcy number

g acceleration due to gravity

H height of the porous cavity
h convective heat transfer coefficient
J viscosity ratio

k average thermal conductivity
(eki+(1—e)ky)

k* conductivity ratio (k/k;)

L characteristic dimension

Nu average Nusselt number

p pressure

Pr  Prandtl number

Ra Rayleigh number

T temperature

t time

u, v velocity components

[V| total velocity vector

x,y coordinate axes.

* Corresponding author. Fax: 0044 01792 29 5676; e-mail:
p.nithiarasu@swansea.ac.uk

Greek symbols

thermal diffusivity

coefficient of thermal expansion
porosity

permeability

kinematic viscosity

ratio of heat capacities

density.

T Q= a8 ™R

Subscripts

¢ cold

f fluid

h hot

s solid

oo ambient.

1. Introduction

Porous media flows are encountered in a variety of
applications such as thermal insulation, underground
water flow, oil recovery, etc. Although early work in this
area pertained to flow in consolidated porous medium [1—
5], more general models have been developed for loosely
packed media [5-10]. In particular momentum equations
which are similar to the Navier—Stokes equations for free
fluid flow has been proposed in recent years [8—10]. Such
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models have provided the theoretical tools for analysing
physical problems such as alloy solidification, flows over
heat exchanger pipes, etc. [11, 12], which can be approxi-
mated by an equivalent loosely packed porous medium.

Application of the generalised porous medium model
for the analysis of natural convective flow in enclosure
filled with a fluid saturated porous medium is of recent
origin [10]. Such investigation became particularly rel-
evant in the higher ranges of Rayleigh and Darcy
numbers. Very interesting phenomena such as flow chan-
neling near the walls occur for the higher range of Ra
and Da which profoundly influence the nature of the flow
and heat transfer processes.

The earlier studies, involving natural convection in
porous enclosures, are primarily limited to lower Ray-
leigh numbers in the non-Darcy flow regimes
(Da > 10~%). Moreover, a majority of enclosure studies
deal with simpler boundary conditions such as prescribed
wall temperature and prescribed wall heat flux [1-10]. In
the present study, the non-Darcy natural convective flow
in a porous cavity is investigated over a wide range of
Rayleigh (10%-10°) and Darcy numbers (10~"-1072) with
a convective type of heat transfer boundary condition on
a vertical wall. The convective boundary condition is
especially relevant for conjugate problems where heat
exchange occurs between the porous cavity and the
medium outside. The present study also focuses attention
on the effects of imposed wall heat transfer coefficient
and the cavity aspect ratio upon the flow structure and
heat transfer.

2. Problem formulation and governing equations

A rectangular cavity filled with fluid saturated porous
medium, having insulated horizontal walls and vertical
walls, subjected to isothermal and free convective con-
ditions is considered (Fig. 1). The properties with the
exception of density are assumed to be constant and
the density variation is incorporated through Boussinesq
approximation. The generalised set of non-dimensional
governing equations for the natural convection flow and
heat transfer with uniform porosity are given as:

Continuity equation

ou Ov
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Fig. 1. Buoyancy driven flow in a porous cavity subjected to
heat transfer coefficient boundary condition.
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The detailed derivation of the governing equations are
discussed elsewhere [10]. In the momentum equations
(eqns (2) and (3)), the non-linear matrix drag is incor-
porated through Ergun’s correlation [13]. In the gov-
erning equations, ¥ and v are volume averaged velocity
components; ¢ is the porosity of the medium and is
assumed to be uniform throughout the domain in the
present study (¢ = 0.6); Pr is the Prandtl number; Ra is
the fluid Rayleigh number; Da is the Darcy number; o
is the ratio of heat capacities; T is the nondimensional
temperature, k* is the thermal conductivity ratio and J is
the viscosity ratio (this ratio is taken as unity in the
present study for the sake of simplicity).

In eqns (2) and (3) the advection terms are also
included to entertain porosity values from 0 to 1 [10].
Even though the contribution of this term is small for a
porous medium flow, it is included in the model to handle
all possible situations including the single phase fluid.
Also, from Ref. [14], it is clear that for the smooth devel-
opment of boundary layer, inclusion of advection terms
is necessary.
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2.1. Convective heat transfer condition

In the problem considered, the left-side wall of the
cavity is subjected to a constant temperature and the
right-side wall is exposed to different convective heat
transfer coefficients. The temperature scale for this prob-
lem is formed in terms of the difference between the
prescribed wall temperature and the ambient tempera-
ture, which is

=" 5
S T,-T, ©
The overall heat loss is based on the line integral along

the cold wall (right-side wall) of the domain and the

relation is:

F BiT (6)

where Bi is the Biot number defined as:

,_hL

Bi X )

with /1 being the heat transfer coefficient imposed. Other
nondimensional parameters used in this study are:
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where the overbar indicates a dimensional quantity.

3. Solution procedure

In the present study, the Galerkin’s finite element
method is used along with the Eulerian velocity cor-
rection procedure. The semi-implicit type of time mar-
ching is adopted to accelerate convergence [15, 16]. The
velocity correction procedure is well established and
available in many research articles [15-17]. The four steps
of this scheme can be briefly stated as

1. solve the momentum equations without pressure
terms,

2. calculate the pressure from the Poisson equation,

. correct the velocities, and

4. calculate the temperature field from the energy equa-
tion.

(98]

The temporal discretisation of Step 1 is given by (cal-
culation of intermediate velocity) [16]:

ﬁn+17un_ gﬁ%—"_i%n_'—lﬁal—’_i@”,]
eAt 2 20x 20y 2[20x 20y

Pr(o*a o*a\ Pr 1.75 |V a !
H =+ == — .
e\ox> 9y*) Da /150 /Da "

The Galerkin’s finite element method is used for the
spatial discretisation of the above equation. The final
matrix form of the discretised equation is given as:

{[M]+At[K] +At[D\ ]+ Ai[D,]}a; = [M]u" + At{{F}
— A1} + [A]u ™} + AGI T (10)
Similarly, other steps of the algorithm can also be dis-

cretised. Further details on the procedure can be found
elsewhere [16].

4. Results and discussion

In this section, the results obtained for a wide range of
parameters have been presented. To check the accuracy
of the present finite element and generalised model, com-
puted temperature distribution in an enclosed axi-
symmetric porous cavity is compared with the exper-
imental results in Fig. 2. The vertical walls are at constant
different temperatures. The radius and aspect ratios are
5.338 and 1, respectively. The particle size and porosity
of the medium are taken as 3 mm and 0.3514, respectively
[3]. The Darcy number calculated from the particle size,
porosity and characteristic dimension is 4.0 x 1077 and
the corresponding Rayleigh numbers to match the
Darcy-Rayleigh number of experiment is 2.775 x 108,
The conductivity ratio k* is calculated from the thermal
conductivity values of water and glass and is equal to
1.31 for the given porosity and particle size [18]. It is seen
that present predictions agree better with the exper-

1.0

‘ o Exp.[3]
------- Num.[3]
—— Present

0 100

Fig. 2. Comparison of present temperature predictions with the
experimental and theoretical predictions in literature,
Da=4x10"", Ra=2.775x10% k* =131, 4 = 1.
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(©

Fig. 4. Flow and isotherm patterns for different Darcy and Rayleigh numbers, 4 = 1: (a) Da = 107°, Ra = 10%, Bi = 2, .., = 0.398,
Vmin = —0.032, Tpin = 0.312; (b) Da = 1073, Ra = 10°, Bi = 2, Ypux = 31.83, Ypin = — 1.724, Ty = 0.627; (c) Da = 1073, Ra = 10°,

Bi = 500, Y. = 66.561, Y, = 0.0, Ty, = 0.006.
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Fig. 5. Flow and isotherm patterns for different aspect ratios: (a) A = 3, Da = 107%, Ra = 10°, Bi = 2, {0y = 16.454, 1, = —0.202
Toin = 0.3478; (b) A =3, Da= 1077 Ra = 10%, Bi = 1, Y = 33.03, Yo = —0.18, T, = 0.7888; (¢) 4 = 10, Da = 10~°, Ra = 10*

Bi =2,y = 7.598, Yn = —0.03, Ty = 0.1893; (d) A = 10, Da = 10, Ra = 10%, Bi = 2, Yrypay = 81.29, hyn = —0.21, Ty = 0.513

() A =10, Da = 1073, Ra = 10°, Bi = 10, Y0y = 11247, Yo = 0.0, Ty = 0.1847.
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imental data than the Darcy model results. The com-
parison of average Nusselt number predictions with
experimental data has been given in our earlier pub-
lication [10].

Further results are presented for the cavity with con-
vecting cold wall. Here, in addition to the Rayleigh and
Darcy numbers, Biot number (non-dimensional heat
transfer coefficient) is also varied to study the influences
of it upon flow and heat transfer.

Figures 3 and 4 show the flow and isothermal patterns
for different Darcy, Rayleigh and Biot numbers. At
Da = 107¢, the eye of the vortex is observed to move
towards the bottom left corner of the cavity with increase
in Rayleigh number. At higher Rayleigh numbers, the
non-Darcy flow regime (Fig. 4) leads to strong con-
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Fig. 6. Vertical velocity distribution near cold wall along the
mid-height of the cavity for different Darcy and Biot numbers,
A=1:(a) Da=10"?, Ra = 10’ (b) Ra=10°, Bi = 1.
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Fig. 7. Average Nusselt number variation with Rayleigh number
for different Darcy numbers, Bi =1, 4 = 1.
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Fig. 8. Average Nusselt number variation with Rayleigh number
for different Darcy numbers, Bi =2, 4 = 1.

vection motion with boundary layer flow. Also here, at
lower Biot numbers, a change in flow pattern occurs with
a thin vortex appearing near the cold wall with opposite
sense of rotation, for instance, Fig. 4(b) shows such a flow
pattern for Da = 1073, Ra = 10° and Bi = 2. Further
reduction in the Biot number strengthens the additional
vortex near cold wall and reduces the heat transfer. The
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isotherms of such flow structure at steady state are clus-
tered near the bottom insulated wall. At lower Darcy
numbers (in the pure Darcy regime) and at any Rayleigh
number considered, no such thin vortices are observed
near the cold wall. The thin vortex in the non-Darcy flow
regime loses its strength with increase in the Biot number
and vanishes at higher Biot numbers (Fig. 4(c)). The
appearance of a thin vortex near the cold wall can thus be
attributed to the non-Darcian forces and to the insulating
effects imposed by the lower heat transfer coefficient on
the cold wall. It is also observed that as the Biot number
approaches higher values, the flow in both the Darcy
and non-Darcy regimes reaches a situation similar to
the cavity with isothermal vertical walls (Fig. 4(c)) with
strong boundary layer type of flow and channeling near
vertical walls.

Streamline and isotherm contours for higher aspect
ratios (Fig. 5) follow a similar pattern as observed for
square cavity. However, the strength of the counter ro-
tating vortex in the non-Darcy flow regime is rather weak
here and is not observed at higher aspect ratios (4 = 10).
Also, here the flow channeling near walls are seen to be
quite strong in the non-Darcy flow regime.

Figure 6 shows the vertical velocity distribution near
cold wall along the mid-height of a square cavity for
different Darcy, Rayleigh and Biot numbers. It is seen
at higher Darcy and Rayleigh numbers and lower Biot
numbers, that there is a positive velocity distribution
near the cold wall. The positive velocity peak approaches
negative value with either increase in Biot number or
decrease in Darcy number. This prediction is consistent
with the observed flow and isothermal patterns (Figs 3
and 4).

Figures 7-10 show the average Nusselt number vari-
ation with Rayleigh number for different Darcy and Biot
numbers and for an aspect ratio of unity. It is seen that the
Nusselt number is a strong function of the Biot number
in addition to the Darcy and Rayleigh numbers and it
increases with the Biot number. The slopes of the curves
are generally less at lower Biot numbers in the non-Darcy
flow regime and increases with increase in Biot number.
They are observed to be unchanged in the Darcy flow
regime and increase with increase in the Biot number.
They are observed to be unchanged in the Darcy flow
regime with increase in the Biot number. At lower Biot
numbers the average Nusselt number curves cross each
other at higher Darcy and Rayleigh numbers. This is due
to the counter rotating vortex which appears at lower
Biot numbers as observed earlier (Fig. 4). Even though
the conduction regime is observed for all Biot numbers,
the asymptotic and boundary layer flow regimes are not
clear at lower Biot numbers due to the counter rotating
vortex. As the Biot number increases, the Nusselt number
distribution approaches a pattern with different heat
transfer regimes as observed for a cavity with isothermal
vertical walls (conduction, asymptotic and boundary
layer regimes).
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Fig. 9. Average Nusselt number variation with Rayleigh number
for different Darcy numbers, Bi =5, 4 = 1.
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Fig. 10. Average Nusselt number variation with Rayleigh num-
ber for different Darcy numbers, Bi = 500, A = 1.

Average Nusselt number patterns at higher aspect
ratios (Fig. 11) are seen to follow the trends observed
earlier in the isothermal wall cavities [5]. In this study,
the maximum Nusselt number value is obtained near an
aspect ratio of about 1 for all the Darcy and Rayleigh
numbers considered. In the Darcy flow regime
(Da = 1079, the conduction mode dominates up to a
Rayleigh number of about 107 and a steep increase in the
slope is observed as convection starts. At a Darcy number
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of 1073, the asymptotic regime follows the conduction
regime. The rate of heat transfer in the asymptotic regime
is higher than that of both conduction and boundary
layer regimes.

Figure 12 shows the average Nusselt number dis-
tribution with the Biot number for different Darcy and
Rayleigh numbers. It is evident from the figure that as the
Biot number increases, the Nusselt number approaches a
constant value which is almost equal to the case with
isothermal vertical walls (Bi = 500). At lower Darcy and
Rayleigh numbers, the Biot number required to reach
this limit is lower than that required at higher Darcy and
Rayleigh numbers.

5. Conclusions

Natural convective flow and heat transfer through
porous medium have been numerically investigated. The
effect of applied heat transfer coefficient on the cold wall
of the enclosure upon flow and heat transfer are studied.
The differences between the Darcy and non-Darcy flow
regimes are clearly brought out through a comprehensive
parametric study for different Darcy, Rayleigh and Biot
numbers and aspect ratios. The following conclusions are
obtained from the study.

A highly convective regime with strong channeling
near the walls and higher heat transfer rates have been
observed at higher Darcy, Rayleigh and Biot numbers.
At lower Biot numbers, a thin vortex with opposite sense
of rotation is observed near the cold wall, which vanishes
as the Biot number increases. This becomes less strong
with a decrease in Darcy number and increase in aspect
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Fig. 12. Average Nusselt number variation with Biot number
for different Darcy and Rayleigh numbers, 4 = 1.

ratio for the Rayleigh number range considered. The Biot
number limit for disappearance of this vortex reduces
with decrease in the Darcy number. The slopes of the
Nusselt number curves increase with the Biot number in
the non-Darcy flow regime and are almost unaltered in
the Darcy flow regime. The system approaches a case with
isothermal vertical walls as the Biot number increases.
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